
1 

 

A Proposed Data Analytics Workflow and Example Using the R 

Caret Package 

 

 
Simon Jones, Zhenghao Ye, Zhuoheng Xie, Chris Root, Theerakorn Prasutchai, Jeremy Anderson, 

Michael Roggenburg, Matthew A. Lanham 

Purdue University, Department of Management, 403 W. State Street, West Lafayette, IN 47907 

jone1107@purdue.edu; ye122@purdue.edu; xie176@purdue.edu; root2@purdue.edu; 

tprasutc@purdue.edu; ander650@purdue.edu; mroggenb@purdue.edu; lanhamm@purdue.edu 

 

 

Abstract 

 

This paper provides a comprehensive explanation of functions that are available in the R caret package, and 

proposed workflow in how one might use them to perform predictive modeling. The motivation for this 

paper is that the R statistical software is one of the most popular languages used by analytics professional 

for data analytics today, and the caret package has grown in popularity since its first release in 2007 to do 

predictive modeling. Unfortunately, the resources available that demonstrate the key functional 

components, expected runtime, and how an analyst might use those in a typical workflow for data mining 

and predictive analytics tasks are limited. We attempt to fill this void by providing the reader a valuable 

reference in how to get started using caret by motivating the functions and their use with a real-world 

dataset. The sample dataset we analyzed was acquired from the 2017 WSDM-KKBox’s Churn Prediction 

Challenge provided on Kaggle.com, a platform for predictive analytics and data mining competitions. We 

demonstrate ways to clean, impute, pre-process, train, and assess popular machine learning models using 

caret. However, our contribution focuses on the actual process of getting results, as opposed to the results 

(e.g. model accuracy) themselves. 

 

Keywords: R, caret, predictive analytics 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:jone1107@purdue.edu
mailto:ye122@purdue.edu
mailto:xie176@purdue.edu
mailto:root2@purdue.edu
mailto:tprasutc@purdue.edu
mailto:ander650@purdue.edu
mailto:mroggenb@purdue.edu


2 

 

Introduction 

 

As the world enters a new age of information, it is becoming increasingly important to train people to 

become literate in analyzing and evaluating data for business and social use. In a popular study by 

McKinsey & Company, they estimated that by 2018 there would be a shortage of 140,000 to 190,000 people 

with deep analytical skills to take advantage of the data being generated (Manyika). In another survey 

conducted by IBM, the job market for Data Scientists will increase 28% by 2020, equating to nearly 364,000 

new positions (Columbus, 2017). Clearly, industry is at a major growth stage in using data to support 

decision-making, and to do so effectively requires that their employees have analytics skills to get the job 

done. 

 

Nowadays, as predictive analytics become a more important part of an organization’s decision-making 

process, more tools are developed to facilitate the execution of predictive analytics. These tools can range 

from low in sophistication to those highly complicated tools that are designed for IT experts. Among these 

are commercial predictive analytic tools like MATLAB and SAS, as well as open-source software like R 

and Python, that have packages such as caret and scikit-learn. The Classification and Regression Training 

(caret) package from R for example is viewed as “one of the best packages available in R to prototype 

various models (Lanham, 2017).”.  

  

Caret provides one of the most comprehensive wrappers for any set of R packages and can be solely used 

to define an entire workflow starting from data cleaning and preprocessing, all the way through model 

training, prediction, and performance analysis. DataCamp.com describes it as a “go-to package in the R 

community for predictive modeling and supervised learning... [and interfaces] with all of R’s most powerful 

Machine Learning facilities (DataRobot, 2016).” While some packages and libraries contain more detailed 

versions of some of the features in caret, the purpose of using it is to allow for a more streamlined process 

for modelers, as many packages have subtle differences that can lead to errors. The reason for this is there 

are many different packages that build different models (e.g. artificial neural network, support vector 

machine, random forest, etc.) and there is no one defined way in how a package developer must design their 

input and output arguments. For example, one package might require specifying the model argument as 

modelA(Y ~ x1 + x1), while another package requires training the model by specifying the individual 

pieces as arguments like so; modelB(y=Y, x=c(x1,x2)). Thus, caret wraps both of these packages into one 

consistent function (i.e. train()) that allows the modeler to have a cleaner modeling workflow and allow for 

more efficient prototyping. For example, to use either of these generic functions might be train(Y ~ x1 + 

x1, method=”modelA”) or train(Y ~ x1 + x1, method=”modelB”). 

 

This data science community which consists of professionals ranging from Data Analyst to Data Scientist 

to Researcher, have embraced the power of open-source tools such as R as part of their workflow, even 

though they might be working at a company that has invested heavily in a commercial product (e.g. SAS). 

The reason is that as method methods are developed, they are often shared in near real-time. For example, 

the open-access Journal of Statistical Software (https://www.jstatsoft.org/index) is a popular avenue for 

researchers that develop new quantitative methods, visual tools, etc. to publish examples of R package as 

soon as their new methodology has been peer-reviewed and published elsewhere. While tutorial papers 

exist for caret, as we demonstrate in the literature review, we believe there is still a lack of information in 

how one can use these functions together to develop a predictive modeling workflow. 



3 

 

 

We structure this paper summarizing insights we found from several academic and professional papers on 

caret in the Literature Review. Next, we describe a data set we used in our study. In the Methodology 

section of the paper we develop a proposed workflow model that the authors have designed. This portion 

will contain a systematic process, as well as corresponding scripts in the R language, which will be used on 

the dataset example. In the Models section we describe ten separate machine learning algorithms used in 

our study and how we easily developed these models using caret. In the Results section we show how to 

compare the results of these models and discuss the runtime we observed to train them. Lastly, in the 

Conclusions we provide some key take-aways points for the reader to help them in their analytics journey 

using the R caret package. 

 

Literature Review 

 

While a lot has been said about the comprehensive nature of the caret package, for new data scientists, the 

process of learning and applying these data mining methods can be daunting. For this reason, we conducted 

a literature review to understand what is known that has been published, and thus frame our proposed 

methodological workflow in this space. Since our study is primarily aimed at creating a general framework 

for a workflow, we carried out our literature review analyzing papers that had been published regarding the 

basic functionalities of caret as well, as applied research that was performed using this package. Table 1 

provides a summary of these studies. 

 

Most of these papers are demonstrative of the applications of caret and the data used in them are sample 

datasets, therefore we have chosen not to delve too deep into the motivations behind the studies. We were 

more interested in understanding common workflows used in the studies, than the results of the studies 

themselves, and we use these studies as support for our proposed recommendation.  

 

Table 1: Summary of the literature 

Year Title Author Description 

2008 The Caret Package Max Kuhn Provides descriptions of functions available when the package was 

first released. It explicitly lists out the constituent functions, 

function descriptions, usage, input values, arguments, and some 

sample code on how to apply it. Unlike the other literature it does 

not present a comprehensive application of the package using a 

sample data set. 

2010 Variable Selection 

Using The Caret 

Package 

Max Kuhn Touches on the topic of dimension reduction and walks the reader 

through different ways by which they could go about it. The two 

primary sections in this paper cover feature selection using search 

algorithms, recursive feature elimination, and feature selection 

using univariate filters. In each section goes over functions in 

detail, the process by which these methods could be applied to 

most data sets. Unlike most of the papers published by Kuhn, this 

does not give any context as to how this fits into the larger data 

mining process. 



4 

 

2013 Predictive 

Modelling with R 

and the Caret 

Package 

Max Kuhn Delves into the predictive modelling process as a whole then 

focuses on using the caret package to build predictive models. The 

paper is divided into 8 broad segments: Introduction to the 

predictive modelling process, data splitting, data preprocessing, 

overfitting and resampling, training and tuning model trees, 

training and tuning a SVM, comparing models, and parallel 

processing. The main difference with this piece of literature on 

caret is that not much emphasis is given to the workings behind 

the processes as opposed to how they all fit together to paint a 

larger picture workflow. 

2013 Predicting Defects 

Using Change 

Genealogies 

Kim Herzig, 

Sascha Just, 

Andreas Rau, 

Andreas Zeller 

Analyzes and estimates software quality requiring the analysis of 

its version histories. The authors combine all changes into change 

genealogies and try to predict software quality based on these 

genealogies. They show that change genealogies provide 

sufficiently good classifiers and prove that the genealogy models 

outperform models based on code complexity which is the norm 

in this field. The authors specifically used caret package in R to 

generate 6 models: K-nearest neighbor (knn), Logistic regression 

(multinom), Recursive partition (rpart), Support Vector Machines 

( svmRadial), Tree Bagging (tree-bag), Random forest 

(raomForest). 

2015 Building Predictive 

Models in R using 

the Caret Package 

Max Kuhn This paper runs the entire process of predictive modeling using 

data from computational chemistry. The author breaks the 

workflow down into its constituent steps i.e. data preparation, 

building the model, tuning the model, predictions, and evaluation. 

The following study is almost entirely carried out using functions 

available in the caret package therefore it would be the most 

comprehensive piece of published literature on the functionalities 

available within this package. To illustrate its breadth, the author 

builds and evaluates multiple models with data available 

emphasizing the theme of a unified interface developed to create 

different models. 

2015 A Short 

introduction to the 

Caret Package 

Max Kuhn A shorter introduction to the caret package and is primarily an 

introduction to the functions available in it. Much like the other 

studies, it goes over a sample workflow from a relatively 

rudimentary dataset. Majority of the emphasis in this paper is 

given to the 'train' function and its applications while walking the 

reader through some sample code. 

2015 A Comparison of 

Data Mining 

Techniques in 

Evaluating Retail 

Credit Scoring 

Using R 

Programming 

Dilmurat Zakirov, 

Aleksey Bondarev, 

Nodar 

Momtselidze 

The comparison conducted by the authors using retail credit 

scoring data for the most part encompasses most popular data 

mining techniques. The paper explores K-Nearest 

Neighbors(KNN), Support Vector Machines (SVM), Gradient 

Boosted Model (GBM), Naïve Bayes Classification, 

Classification and Regression Trees, and Random Forests as 

methods for predicting customer scores using an actual dataset. 

The paper concludes, that the Random Forest model with down-

sampling had a higher accuracy when compared to the other 

models presented. The paper does a thorough job at summarizing 



5 

 

the applications of each of these modeling methods but does not 

cover the data pre-processing stage. A lot is yet unknown as to the 

normalization methods used during the data preprocessing phase. 

2016 Evaluation of four 

supervised learning 

methods for 

groundwater spring 

potential mapping 

in Khalkhal 

region(Iran) Using 

GIS-based features 

Seyed Amir 

Naghibi, Mostafa 

Moradi 

Dashtpagerdi 

A critical tool for water resource management in semi-arid and 

arid regions is the mapping of groundwater potential for planning 

and usage purposes. This paper evaluates four popular data mining 

models: K-Nearest Neighbors(KNN), Linear Discriminant 

Analysis (LDA), Multivariate Adaptive Regression Splines 

(MARS) and Quadratic Discriminant Analysis (QDA) to model 

groundwater potential maps (GPMS). The authors used caret for 

carrying out their Quantitative Discriminant Analysis and 

achieved an accuracy of roughly 61.2%. While this paper is not 

solely based on caret, it does represent an example of applied 

research carried out using it. 

 

After a review of the literature, most articles come from the author of the package itself. We found that the, 

“Building Predictive Models in R using the Caret Package (Kuhn, 2015)” paper to be the closest to our 

study. Our study differs from this in that we demonstrate the functionality using a business example (e.g. 

churn), rather than a chemistry example. This is important because the target audience of this paper are 

those researchers or practitioners doing business analytics, and not physical science research. 

 

Data 

 

The business example we use in this study is from KKBOX, a Taiwanese music streaming service, and 

happens to be Asia’s top provider founded in 2004. Its primary regions of operation are Taiwan, Hong 

Kong, Malaysia, and Singapore hosting the world’s most extensive music library with over 30 million 

tracks. Their business model is funded through advertisements and paid subscriptions. KKBOX aims to 

accurately predict churn of their paid customers from who they receive most of their revenue. 

 

KKBOX provided through Kaggle.com a large dataset of their customers listening and subscription 

behavior and allowed the analytics community to compete to build the best churn prediction problem. There 

are five sets of data: train, sample_submission_zero, transaction, user_logs, and members. Data descriptions 

and features are shown below. 

 

Table 2 consists of customer user ids and whether those customers churned or not and have a subscription 

expiration in February 2017. These users were the main ones that competition participants use to build a 

predictive model. 

 

Table 2: Train table 

Variable Type Description 

msno Factor The unique user identification 

is_churn Integer Classify churner and non-churner 

 



6 

 

The scoring set of data consists of user ids and whether they have churned or not as shown in Table 3. 

These are users who have subscription expiration in March 2017. In this file, all is_churn values are zeros 

and the modeler is required to submit their probability prediction based on the modeling solution they 

generate. Only Kaggle knows the true is_churn flag, but when you submit your predictions to Kaggle you 

are scored compared to other participants. 

 

Table 3: Sample_submission_zero table 

Variable Type Description 

msno Factor The unique user identification 

is_churn Integer Predict churner and non-churner 

 

Table 4 contains a description of the listeners transaction details of the users up until February 28, 2017. 

The data set consists of 9 features as shown below. 

 

Table 4: Transaction table 

Variable Type Description 

msno Factor The unique user identification 

payment_method_id Integer Classify payment method user used for subscription 

payment_plan_days Integer The number of days of subscription 

plan_list_price Integer The listed subscription price 

actual_amount_paid Integer The actual paid price 

is_auto_renew Integer Classify auto subscription renewal users 

transaction_date Integer The date that transaction was made 

membership_expire_date Integer The subscription expiration date 

is_cancel Integer Classify churner 

 

The user logs describe the users’ behavior in using the KKBOX service and how they listened to music. 

For example, in Table 5 we obtain measures about the quantity of songs played, and how much of the 

length of the songs were listened too.  

 

Table 5: User_logs table 

Variable Type Description 

msno Factor The unique user identification 

date Integer Date when the usage was recorded 

num_25 Integer Number of songs played less than 25% of the song length 

num_50 Integer Number of songs played between 25% and 50% of the song 

num_75 Integer Number of songs played between 50% and 75% of the song 

num_985 Integer Number of songs played between 75% and 98.5% of the song 

num_100 Integer Number of songs played over 98.5% of the song length 

num_unq Integer Number of unique songs that user play 

total_secs Numeric Total time songs are played in the unit of seconds 

 



7 

 

General information about a user such as age, gender, etc. as displayed in Table 6. We found that some of 

the observations in this table are incomplete or would be considered outliers. 

 

Table 6: Members table 

Variable Type Description 

msno Factor The unique user identification 

city Integer The city where user locates 

bd Integer Age of the user 

gender Factor Gender of the user 

registered_via Integer The method user used for registration 

registration_init_time Integer Initial registration date 

expiration_date Integer Subscription expiration date 

 

Table 7 contains generated features based on the attributes provide in the previous tables. We utilized some 

of the factors described above to create dummy variables which is indicative of the information. They were 

then used in the analysis. 

Table 7: Generated features table 

Variable Type Description 

sub_Churn Factor Created based on the subscription model described by Kaggle’s. 

According to Kaggle, some non-churners are indeed churners, 

and it’s taken into consideration by this variable. This variable 

was not used in our modeling. 

avgpayment Numeric The average payment to the service from the Transaction dataset 

latest_renew Date What was the latest day to renewal from the Transaction dataset 

latest_cancel Date What was the latest day of cancellation of the Transaction dataset 

pct_cancel Numeric On average how many times the data had them listed as canceled 

on the Transaction dataset 

Pricother Factor There were several different factor levels for the price. Most 

prices are put into their respective levels, and a small group that’s 

left are grouped into "pricother" 

Pric149 Factor Dummy for price = 49 

method Factor Payment method. Similar to price, most methods can be grouped 

to form their respective levels, and dummy variables are used.  

meth36 Factor Dummy for method = 36 

methother Factor There were several different factor levels for payment method. 

The majority of methods came from like 6 or 7 different levels 

and grouped all the rest into "methother" 

plan Factor Payment plan. The majority of methods came from 2 or 3 

different levels. Thus, dummy variables are included. 



8 

 

planother  Factor There were several different factor levels for the payment plan. 

The majority of payment plan came from like 2 or 3 different 

levels and grouped all the rest into " Planother".  

plan7 Factor Dummy for Plan=7 

Daysrange Numeric How many days lasted for the service 

 

Methodology 

 

The caret package contains functions to perform the entire modeling process from pre-processing to 

modeling to feature selection to the final predictive output. Figure 1 below details our proposed workflow. 

Here we focus on five different categories of functions: Data Visualization, Preprocessing, Data Splitting, 

Modeling, and Model Evaluation. Under each category are the caret functions that one will likely use when 

prototyping their predictive modeling solution.  

 

Figure 1: Proposed caret workflow 

 

 

 

Data Visualization 

Data Visualization is the process of understanding the data used throughout the predictive workflow. It can 

be used at any step of the process to verify results or determine errors. Caret provides a variety of functions 

for gathering insights from analyzing the data visually. The various plot functions shown in Table 8 provide 

a very simple way to create complex graphical displays for your data without the need for large amounts of 

code. Many analysts agree that visualizing your data before analyzing it can expedite finding non-linear 

relationships or high correlations. However, it is recommended that you utilize caret’s visualization 

functionality at any step due to its ease of use. 

 

 

 



9 

 

Table 8: caret data visualization functions 

Function Description 

featureplot Outputs a range of visual plots i.e. scatterplot/boxplot 

dotPlot Create a dot plot of variable importance values 

lift Lift Plot 

plotClassProbs Plot Predicted Probabilities in Classification Models 

plotObsVsPred Plot Observed versus Predicted Results in Regression and Classification Models 

 

Pre-processing 

Pre-processing is the technique that prepares data for predictive applications. Normally, the raw data may 

be incomplete or noisy to use due to various problems such as obsolete fields, missing values, outliers, etc. 

Missing values should be dealt with first using a methodology consistent with the business problem. Also, 

R can improperly load in feature classes, therefore it is essential to evaluate every variable in the dataset 

and convert it to the intended class if necessary. Caret is extremely useful in pre-processing raw data beyond 

just removing missing information. To start with, if a dataset contains categorical features with many levels,  

then the dummyVars function can provide a very quick way to break apart the factor levels into separate 

columns and avoid certain instances of correlation. It is recommended to use a combination of 

findLinearCombos and findCorrelation functions to reduce dimensionality through linear combinations 

of features and remove correlated variables which harm the effectiveness of certain models. This step can 

confirm your findings in the visualization step if any exist as well. Finally, the preProcess function provides 

an extremely simple way to transform and re-scale your data. For example the z-score standardization can 

easily be done using method=c(“center”,”scale”) while min-max normalization can be done using 

method=c(“range”). Sometimes, analysts also want to try and make their input features more Gaussian 

distributed, thus you could do this in isolation such as method=c(“Yeo-Johnson”), or combine this 

transformation with scaling, such as method=c(“range”,”Yeo-Johnson”). Figure 2 shows an excerpt of 

the code using dummyVars, nearZeroVar, findCorrelation, and preProcess used in this analysis. Table 

9 provides a summary of the pre-processing functions. 

 

Figure 2: Pre-processing code applications 

 
 



10 

 

Table 9: caret pre-processing functions 

Function Description 

dummyVars Create A Full Set of Dummy Variables (turns an n-level factor into (n-1) 

separate boolean factors) 

findCorrelation Determine highly correlated variables 

findLinearCombos Determine linear combinations in a matrix 

nearZeroVar Identification of near-zero variance predictors 

preProcess Pre-processing of predictors 

classDist Class centroids and covariance matrix 

 

Feature Selection 

Feature Selection is the process of reducing the dimensionality of the data without significant loss in 

performance and predicting power with the effort to create a simpler model. In general, most approaches 

for feature selection (reducing the number of predictors) can be placed into two main methods: wrapper 

and filter. For wrapper method, caret has functions to perform recursive feature elimination, genetic 

algorithms, and simulated annealing as shown in Table 10. For filter method, caret has a general framework 

for using univariate filters. (Kuhn, 2017). 

 

If feature reduction was not completed in the pre-process step or this step, further reduction can be done in 

the modeling portion of the workflow. Certain models run through the train function have Principal 

Component Analysis added to them which can supplement the functions in the list and further reduce 

dimensionality.  

 

Table 10: caret feature selection functions 

Function Description 

filterVarImp Calculation of filter-based variable importance 

gafs Genetic algorithm feature selection 

gafsControl, safsControl Control parameters for GA and SA 

rfe, rfeIter Backward Feature Selection 

rfeControl Controlling the Feature Selection Algorithms 

safs Simulated annealing feature selection 

sbf Selection By Filtering (SBF) 

sbfControl Control Object for Selection By Filtering (SBF) 

varImp Calculation of variable importance for regression and classification models 

 

Data Splitting 

Data splitting is the process of partitioning the data into two or more separate subsets with the intention of 

using one set to train the model, and the other set to test or validate it. Data can be split in several different 

ways depending on the problem at hand. The createDataPartition function will generate an index for 

splitting your dataset for any number of stratified random subsets of any size partition between train and 

test sets. CreateFolds is similar to this and will index your data into k-folds of randomly sampled subsets. 

Another useful splitting function is createTimeSlices which will index your data into training and test sets 

when it is in time series format and want a rolling train/test window. After splitting the data, it is common 



11 

 

to find, especially in classification problems, that a certain class is much larger. In such cases, using 

upSample, downSample, SMOTE or ROSE functions provide easy ways to resample your data to obtain 

more even distributions of each response and reduce bias when the classifier tries to learn. Figure 3 shows 

an excerpt from the code used in this analysis showing the data partitioning step. Table 11 summarizes 

these functions. 

 

Figure 3: Data partitioning code 

 
 

Table 11: caret data splitting functions 

Function Description 

createDataPartition Creates a series of test/training partitions 

createFolds Splits the data into k groups 

createTimeSlices Creates cross-validation split for series data 

downSample, upSample Down- and Up-Sampling Imbalanced Data 

groupKFold Splits the data based on a grouping factor 

maxDissim Creates a sub-sample by maximizing the dissimilarity between new samples and 

the existing subset 

SMOTE, ROSE Mix of upsampling/downsampling 

upSample Samples with replacement until all class frequencies are equal 

downSample Randomly sample a dataset so that all class frequencies match the 

minority class 

 

Modeling 

Model training starts with specifying training parameters for a model that you may want to run. It feeds in 

the validation method, type of problem (i.e. regression/classification), and conditions for training. The 

second step specifies the model to train and the respective tuning parameters.  

 

The two important functions are trainControl, which specifies the validation technique (e.g. k-fold, 

LOOCV, etc.) and type of modeling problem (e.g. regression, classification). The train function is one of 

the most extensive functions in R. It has integrated or wrapped 238 modeling packages as the time of writing 

this study, where each approach uses by default three different combinations of tuning parameters. A user 

can specify directly the tuning parameter combinations they would like to try or use a generic tuneLength= 

argument that will create a reasonable set of possibilities based on the number you specify. In addition, 

code-savvy users can create their own models and cleanly run them through the train function. The output 

for train identifies the “best” model obtained among the set of possible tuning parameters and uses that as 

the final model. Among other things, Figure 4 shows the trainControl and train functions being applied 

for this paper’s analysis. Table 12 provides a summary of the modeling and tuning functions in caret. 



12 

 

Figure 4: Model Training and Statistic Recording  

 
 

Table 12: caret modeling and tuning functions 

Function Description 

trainControl Specifies the type of problem, conditions for training a model and methods for validation 

train Specifies the desired model and corresponding tuning parameters 

 

Model Performance & Evaluation 

Model evaluation directly follows the model training step. In this section, the user benchmarks the model(s) 

against some predefined metric for the problem or each other. The confusionMatrix function is a powerful 

tool for classification problems and produces the distribution of type-I, type-II errors, and correct/incorrect 

classifications. The regression counterpart to this is the postResample which outputs the MSE and RS for 

the model. Using the predict function will return a multitude of probability predictions based on the model 

and can be applied to both classification and regression models. There are also a variety of further statistics 

that can be reported using the rest of the functions from the list. After evaluating the model, if it does not 

achieve the required performance, iteration of the modeling stage is recommended using different tuning 

parameters. Figure 4 above showed the performance evaluation confusionMatrix on the 9th and 10th lines 

of the loop. Table 13 summarizes the functions. 

  

Table 13: caret performance and evaluation functions 

Function Description 

calibration Probability Calibration Plot 

confusionMatrix Create a confusion matrix 



13 

 

defaultSummary Default function to compute performance metrics in train 

postResample Calculate the MSE and R2 given two numeric vectors of data 

twoClassSummary Computes sensitivity, specificity, and AUC 

multiClassSummary Computes some overall measures of performance (accuracy and 

Kappa) 

extractPrediction Extract predictions and class probabilities from train objects 

extractProb Extract class probabilities from train objects 

negPredValue, posPredValue, sensitivity Calculate sensitivity, specificity and predictive values 

recall Calculate recall 

precision Calculate precision 

F_meas Calculate F values 

resamples Collation and Visualization of Resampling Results 

resampleSummary Summary of resampled performance estimates 

thresholder Generate Data to Choose a Probability Threshold 

 

Other 

In Table 14 there are other functions that do not necessarily fall into any of the other categories that are 

useful in the data analysis workflow. 

 

Table 14: caret other functions 

Function Description 

getSamplingInfo Get sampling info from a train model 

learning_curve_dat Create Data to Plot a Learning Curve 

modelLookup, checkInstall, getModelInfo Tools for Models Available in train 

SLC14_1, SLC14_2, LPH07_1, LPH07_2, twoClassSim Simulation Functions 

 

Models 

 
In our business example, the response variable (is_churn) is a binary variable; therefore, making this 

problem binary classification problem. In this study, we used ten different models among the many 

available to compare their performance including accuracy and runtime. Table 15 provides a summary of 

these methods. Some are common models such as neural network and naïve bayes, some are models 

suggested in section 7.0.50 (Two Class Only) of The Caret Package (Kuhn, 2017) such as AdaBoost 

Classification Tree, and Support Vector Machines with class weights.  

 

Table 15: caret models used in this study 

Model Function Type Tuning Parameters 

   Naïve Bayes nb Classification ·Laplace Correction (fL, numeric) 

·Distribution Type (usekernel, logical) 

·Bandwidth Adjustment (adjust, numeric) 

  Neural Network nnet Classification 

Regression 

·Size (#Hidden Units) 

·Decay (Weight Decay) 



14 

 

Neural Network with 

Feature Extraction 

pcaNNet Classification 

Regression 

·Size (#Hidden Units) 

·Decay (Weight Decay) 

Oblique Random Forest ORFlog Classification ·Number of Randomly Selected Predictors (myry, 

numeric) 

Bagged CART treebag Classification 

Regression 

 No tuning parameters for this model. 

Stochastic Gradient 

Boosting 

gbm Classification 

Regression 

·Number of Boosting Iterations (n.trees, numeric) 

·Max Tree Depth (interaction.depth, numeric) 

·Shrinkage (shrinkage, numeric) 

·Min. Terminal Node Size (n.minobsinnode, numeric) 

Bagged AdaBoost AdaBag Classification ·Number of Trees (mfinal, numeric) 

·Max Tree Depth (maxdepth, numeric) 

Boosted Logistic 

Regression 

LogitBoost Classification ·Number of Boosting Iterations (nIter, numeric) 

C5.0 Tree C5.0 Classification ·Number of Boosting Iterations (trials, numeric) 

·Model Type (model, character) 

·Winnow (winnow, logical) 

Support Vector 

Machines with Class 

Weights 

svmRadial

Weights 

Classification ·Sigma (sigma, numeric) 

·Cost (C, numeric) 

·Weight (Weight, numeric) 

 

1.  Naïve Bayes 

Naïve Bayes classifiers are a family of simple probabilistic classifiers that are based on Bayes Theorem. 

These classifiers are particularly well suited to datasets where the dimensionality of the inputs is high. Naïve 

Bayes is also fast in terms of computation speed and simple in terms of implementation. On the other hand, 

Naïve Bayes relies on the assumption that all features are independent, which is where the “naïve” in its 

name comes from. If the naïve assumption is violated, the classifier might perform rather badly. 

 

2. Neural Network 

The concept of neural network is inspired by how animal brains work: with a vast network of interconnected 

neurons. It contains an input layer, an output layer, and defined number of hidden layers and neurons. It is 

widely applied in artificial intelligence such as speech and image recognition. A Neural Network is a 

powerful algorithm to model non-linear data, especially with a large number of input features such as 

sounds and pictures. Meanwhile, it is nearly impossible to understand the classification boundaries 

intuitively. For large data sets, a Neural Network is also computationally expensive. 

 

3. Neural Network with Feature Extraction 

A Neural Network works well with feature extraction because of its powerful parallel computation. The 

model can lead an exploratory network which can perform dimension reduction or feature extraction on the 

training dataset in both linear and nonlinear neurons. “First, the formulation of a single and a multiple 

feature extraction are presented. Then a new projection index that favors directions possessing 

multimodality is presenter (Intrator).” 

 

 

 



15 

 

4. Oblique Random Forest 

The Oblique Random Forest shares basic ideas with the Random Forest algorithm such as bagged trees. 

The main difference is the procedure of optimal splits direction are sought at each node, for the Oblique 

Random Forest, it focuses on the multivariate models for binary splits in each node. There are two types of 

Oblique Random Forests: oRF-lda, which performs an unregularized split and oRF-ridge that optimizes 

regularization parameter at every split (Menze). 

 

5. Bagged CART 

Bagging is also referred to bootstrapped aggregation, which is an ensemble method from the “ipred” 

package which creates different models of the same type using different sub-samples of the same dataset. 

The bagged CART is very effective when the methods have high variance because all models will be 

combined to provide a final result (Browniee, 2014). 

 

6. Stochastic Gradient Boosting 

Stochastic Gradient Boosting is basically a gradient boosting model with a minor modification. It combines 

the randomness as an integral part of the procedure. Stochastic Gradient Boosting makes “the value of f 

smaller [reducing] the amount of data available to train the base learner at each iteration. This will cause 

the variance associated with the individual base learner estimates to increase (Friedman, 1999).” 

 

7. Bagged AdaBoost 

AdaBoost is best used to boost the performance of decision trees on binary classification problems. 

AdaBoost is a very good approach as it corrects upon its mistakes. The boosting for this model is achieved 

through ensembling methods. However, the biggest problem with this algorithm is that it is sensitive to 

outliers. 

 
8. Boosted Logistic Regression 

Logistic regression is a special case of a Generalized Linear Model (GLM) where the response variable is 

binary. It uses a logistic function to measure the relationship between the responsible variables and 

predictors. Unlike other models in GLM family, the outputs of a logistic regression are probabilities, which 

could be converted to binary results (0 or 1) based on a specified cutoff threshold. One of the advantages 

of using logistic regression is that it is simple and efficient. It does not use large memory space to run. In 

addition, the output probability scores are easy to interpret, and it is possible to manually change the cut-

off to obtain the best prediction results. However, logistic regression does not perform well for small data 

sets as it will tend to overfit to the training data.  

 
9. C5.0 Tree 

The C5.0 tree model extends the C4.5 classification algorithms developed by Ross Quinlan (1992). It is a 

decision tree model with some improvement from its previous C4.5 tree. C5.0 is a sophisticated data mining 

tool for discovering patterns that delineate categories, assembling them into classifiers, and using them to 

make predictions (Information on See5/C5.0, 2017). Like other decision trees, C5.0 is able to handle non-

linear features and make intuitive decision rules. However, it does not provide ranking scores and 

sometimes it is extremely vulnerable to overfitting. 

 

 



16 

 

10. Support Vector Machines with Class Weights 

Like Neural Networks, Support Vector Machines (SVMs) are a very popular machine learning technique. 

SVMs were developed by Cortes & Vapnik in 1995 for binary classification and can handle non-linear 

decision boundaries. SVMs can handle a large feature space, but are not very efficient (Sachan, 2015). 
 

Results 

 

Runtime 

Runtime is one of the key factors to consider when choosing among a possible set of predictive solutions 

to support the business problem. It is also important when deciding on the technology or architecture to 

use. Some detractors of R claim that it does not perform as well as other languages such as Python or SAS. 

Thus, we provide an idea of runtime for a large dataset such as the one this large company uses to understand 

if their customers will churn or not. 

 

There is no concrete relation between runtime and accuracy of the predictive model. However, more 

complex models will typically require more time to perform the prediction. Essentially, an accurate model 

with short runtime is ideal, however this is unlikely. Depending on the business problem at hand, a quicker, 

less accurate model or a slower, more accurate model may be preferred. Table 16 shows the total run for 

these ten models ranges from one minute to 11 hours. 

 

Table 16: Run time by algorithm 

Algorithm Total Run Time Training Time Predict/Score Time 

nb 18.94176 mins 9.188566 mins 9.753199 mins 

nnet 10.46171 mins 10.44262 mins 0.01909322 mins 

pcaNNet 7.621718 mins 7.584865 mins 0.03685278 mins 

ORFlog 10.00892 hours 9.759153 hours 0.2497653 hours 

treebag 6.574278 mins 4.305433 mins 2.268845 mins 

gbm 2.763423 mins 2.741724 mins 0.02169898 mins 

AdaBag 34.03858 mins 33.18765 mins 0.850931 mins 

LogitBoost 1.094711 mins 49.7573 secs 15.92534 secs 

C5.0 26.34021 mins 25.73059 mins 0.6096223 mins 

svmRadialWeights 11.82071 hours 11.73735 hours 0.08335575 hours 

 

According to runtime recorded in the chart above, the Oblique Random Forest and Support Vector 

Machines with class weights are two most time-consuming models among ten predictive models we chose 

for the study. They both took more than ten hours to run.  

 

Accuracy, Sensitivity, and Specificity Performance 

When we get the results, we must first understand the difference between the training set and the testing set 

and be sure that we did not overfit to the training set. During the “Data Splitting” of the workflow, we 

partitioned the data into two sets: train and test sets, where the training set contains the majority of the data. 

This training set will be used to train the model. Once the model is trained, the test set data will be fed into 

the trained model. If the model is well-trained we will expect to see the accuracy of the test set to be similar 

to the accuracy of the training set. What we do not want is to overfit the data to the training set, which 



17 

 

means that the model we trained only gives us good results for the training set. If we put in the testing data 

into the overfitted model, we see that the results we get for the test set are not similar to the training set 

results. Figure 5 shows the accuracy of each model on the train and test sets. Accuracy gives a percentage 

of the amount of overall correctly identified targeted variable. 

 

Figure 5: Accuracy by model 

 
Figure 6 provides the sensitivity (or true positive rate). Sensitivity is the percentage of users that were 

correctly predicted as churners whom were actually churners. We see in this business case, most of the 

models tend to perform well at predicting churners on the train set, but do not generalize well as the test set 

performance is much lower. We believe this is due to the imbalance in the data set, as most customers are 

non-churners. 

 

Figure 6: Sensitivity by model 

 



18 

 

Figure 7 provides specificity (or true negative rate). Specificity measures the proportion of predicted non-

churners whom were actually non-churners. We see similar performance on the train and test sets for all 

algorithms on the specificity performance measure. The logic is the same as that for sensitivity in that since 

most records are non-churners, the algorithms will tend to predict those better than the churners. 

 

Figure 7: Specificity by model 

 
The Oblique Random Forest and Bagged CART are overfitting models whose accuracy of train dataset is 

much higher than that of test dataset, especially Oblique Random Forest with test accuracy less than 35%, 

not mentioning its 10-hour runtime. The best model based on accuracy is C5.0 Tree since its accuracy of 

test dataset is a bit higher than train dataset and results of two datasets are close. With respect to the 

sensitivity for our Oblique Random Forest we get 100% which means that we have correctly identified all 

of the people who churn in our data. As for the specificity for the Oblique Random Forest, we see that it is 

low which means that we tended to assume that people were going to churn more than they actually were. 

We get these results because the Oblique Random Forest tended to guess that a customer was going to 

churn more often than not churn which leads to a high sensitivity but to a low specificity.   

 

Table 17: Train and test statistics by algorithm. 

Model 
Train 

Accuracy 

Train 

Sensitivity 

Train 

Specificity 

Test 

Accuracy 

Test 

Sensitivity 

Test 

Specificity 

nb 0.819057 0.895409 0.723617 0.719743 0.621522 0.72156 

nnet 0.884458 0.907025 0.856248 0.853869 0.673895 0.857197 

pcaNNet 0.880958 0.911831 0.842366 0.843237 0.722586 0.845468 

ORFlog 0.70673 1 0.340142 0.333839 0.995908 0.321595 

treebag 0.998637 0.99818 0.999207 0.893044 0.625205 0.897998 

gbm 0.906069 0.928848 0.877595 0.875332 0.693535 0.878695 

AdaBag 0.863256 0.886962 0.833623 0.833735 0.723813 0.835767 

LogitBoost 0.876175 0.86698 0.887667 0.880318 0.51964 0.886988 

C5.0 0.954131 0.951099 0.95792 0.902837 0.638298 0.907729 

svmRadialWeights 0.906989 0.924594 0.884983 0.878074 0.690671 0.88154 

 

 



19 

 

Lift Curve 

Lift is the concept of how much of an identified population is captured at a given percentile, that is to say, 

for a given percentile cutoff what is the proportion of positives were identified over how many positives 

were identified by the model.  

 

Figure 8: Lift curves by algorithm 

 
For our problem, the lift curves for Naïve Bayes, Bagged ADABoost, and LogicBoost did not perform well 

since they need a higher percentile of the population to find the same amount of sample results as other 

models. The C5.0 classification tree was the best model based on lift. 

 

Area Under Curve (AUC) 

The Area Under Curve is obtained from the area under the receiver operating characteristic (ROC) curve, 

which plots sensitivity versus 1- specificity. The plot is also known as ROC plot.  The area under the curve 

increases when the model identifies true positives accurately regardless of the false positive performance. 

 

Table 18: AUC by algorithm 

Model AUC 

nb 0.772650517 

nnet 0.866525556 

pcaNNet 0.86538195 

ORFlog 0.836493277 

treebag 0.887684069 

gbm 0.873647309 

AdaBag 0.779440607 



20 

 

LogitBoost 0.820858647 

C5.0 0.899662705 

svmRadialWeights 0.775597068 

 

In general, all ten models performed well based on AUC as all values are greater than 0.77. We observed 

that the C5.0 tree and Bagged CART models were the two best models for this problem among the ten 

models. 

 

Observational Resampling of Statistics 

From a statistical point of view, as the ROC, sensitivity, and specificity are calculated by observational 

data, the statistical true value of these statistics should be best summarized as a confidence interval. In order 

to generate the graphs below, the created models on subsets of the test data set and calculated the AUC, 

sensitivity, and specificity 1,000 times. Figure 9 shows the robustness of these models. 

 

Figure 9: Boxplot of results 

 
For our data, as there were significantly many observations in the training set, the values of each of the 

statistics are relatively robust, indicating the model is well trained and that the above conclusions made 

previously in this paper are not due to incidental values, namely the Oblique Random Forest’s markedly 

low specificity. 

Conclusion 

 

With the development of various kinds of predictive analytic tools and models, the selection of predictive 

models has become more important for companies in the business world. This study demonstrates how the 

caret package in R provides many sophisticated functions to generate a complete predictive analytics 

workflow. Caret provides one of the most comprehensive wrappers for any set of R packages and can be 

solely used to define an entire workflow starting from data cleaning and preprocessing, all the way through 

model training, prediction, and performance analysis.  

 

In our study, we summarized the available function, show how to use them in order, and show results from 

a real business problem, using different kinds of algorithms. We believe those new to R or caret will find 



21 

 

this paper useful and a go-to reference to get up to speed more quickly and use some of these functions for 

their predictive modeling task. 

 

We are currently working to extend this study on the same dataset using the popular scikit-learn package. 

Since R and Python are most popular analytics languages used by professionals today, we hope to identify 

functionality that does and does not exist in each, as well as compare both model performance and runtimes. 

As stated in our paper, some detractors of R believe the performance is not well-equipped enough to support 

developing and predicting on large datasets and languages such as Python are.  

 

References 

 

Batuwita, R., & Palade, V. (2012). CLASS IMBALANCE LEARNING METHODS FOR SUPPORT 

VECTOR MACHINES (pp. 1-2). University of Oxford Retrieved 12 December 2017, from 

http://www.cs.ox.ac.uk/people/vasile.palade/papers/Class-Imbalance-SVM.pdf  

 

Brownlee, J. (2017). K-Nearest Neighbors for Machine Learning - Machine Learning Mastery. Machine 

Learning Mastery. Retrieved 11 December 2017, from https://machinelearningmastery.com/k-

nearest-neighbors-for-machine-learning/ 

 

Cortes, C. & Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 1–25. 

 

ctufts/Cheat_Sheets. (2017). GitHub. Retrieved 12 December 2017, from 

https://github.com/ctufts/Cheat_Sheets/wiki/Classification-Model-Pros-and-Cons 

 

Information on See5/C5.0. (2017). Rulequest.com. Retrieved 12 December 2017, from 

http://www.rulequest.com/see5-info.html 

 

Lanham, M. (2017) Project Problem: A Comparison of R Caret and Python scikit-learn for Predictive 

Analytics. 

 

Kuhn, M. (Oct 4, 2007) Caret Package v2.27. Retrieved from 

https://www.rdocumentation.org/packages/Caret/versions/2.27 

 

Kuhn, M. (2017). The Caret Package. GitHub. Retrieved 14 December 2017, from 

https://topepo.github.io/Caret/ 

 

Sachan, L. (2015). Logistic Regression vs Decision Trees vs SVM: Part II - Edvancer Eduventures. 

Edvancer.in. Retrieved 11 December 2017, from https://www.edvancer.in/logistic-regression-vs-

decision-trees-vs-svm-part2/ 

 

Scikit-learn Developers (Nov 21, 2017). Scikit-learn User Guide Release 0.19.1. Retrieved from 

http://scikit-learn.org/stable/_downloads/scikit-learn-docs.pdf 

 

http://www.cs.ox.ac.uk/people/vasile.palade/papers/Class-Imbalance-SVM.pdf
https://machinelearningmastery.com/k-nearest-neighbors-for-machine-learning/
https://machinelearningmastery.com/k-nearest-neighbors-for-machine-learning/
https://github.com/ctufts/Cheat_Sheets/wiki/Classification-Model-Pros-and-Cons
http://www.rulequest.com/see5-info.html
https://www.rdocumentation.org/packages/caret/versions/2.27
https://topepo.github.io/caret/
https://www.edvancer.in/logistic-regression-vs-decision-trees-vs-svm-part2/
https://www.edvancer.in/logistic-regression-vs-decision-trees-vs-svm-part2/
http://scikit-learn.org/stable/_downloads/scikit-learn-docs.pdf


22 

 

Friedman, J. H. (1999, March 26). Stochastic Gradient Boosting. Retrieved February 22, 2018, from       

https://statweb.stanford.edu/~jhf/ftp/stobst.pdf 

 

Intrator, N. (n.d.). A Neural Network for Feature Extraction. Retrieved February 23, 2018, from                 

https://pdfs.semanticscholar.org/970a/2fa8e2a8a3139a87fa9379dbda0536654a77.pdf 

 

Menze, Bjoern H., et al. On Oblique random Forest.  

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.207.7485&rep=rep1&type=pdf  

 

Non-Linear Classification in R with Decision Trees. (2016, September 21). Retrieved February 23,      

2018, from https://machinelearningmastery.com/non-linear-classification-in-r-with-decision-

trees/ 

https://statweb.stanford.edu/~jhf/ftp/stobst.pdf
https://pdfs.semanticscholar.org/970a/2fa8e2a8a3139a87fa9379dbda0536654a77.pdf
https://machinelearningmastery.com/non-linear-classification-in-r-with-decision-trees/
https://machinelearningmastery.com/non-linear-classification-in-r-with-decision-trees/

